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1 Introduction

There is a variety of methods used for estimating the average treatment effect in

observational studies. To obtain unbiased estimates of the average treatment effect,

there must be a balance in the distribution of covariates between the treated and

control groups. Difficulties arise when a lack of covariate balance occurs between

these groups, and when the covariates have a confounding effect on the response.

Covariate balance can be obtained using propensity score methods and reweighting

schemes. The propensity score is defined by Rubin and Rosenbaum as the probability

of treatment assignment conditional on observed baseline characteristics [6]. The
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propensity score is used as a balancing score, in order to determine the treatment

effect in some experiment. This paper will discuss important theorems behind the

propensity score, as well as several methods for determining the average treatment

effect by using the propensity score as well as re-weighting schemes. This will be

done by analyzing the different methods in Monte Carlo simulations and then a non-

randomized study. The study was conducted by the German Breast Cancer Study

Group in an attempt to estimate the effect of breast conservation methods versus

mastectomies on the quality of life of the patient.

2 Set Up

When an experiment is designed to estimate the effects of a treatment, the

researchers would ideally use randomized control trials (RCTs). In RCTs, treatment

allocation is done randomly, which theoretically ensures the distribution of the co-

variates are the same in both the treatment and control groups. RCTs are not always

feasible for both ethical and financial reasons, which results in the use of observa-

tional studies. In an observational study, the treated and control groups may have

systematic differences, resulting in different distributions of the covariates between

the two groups. This issue can lead to bias in the estimate for the average treatment

effect. This paper will explore multiple methods of balancing the distribution of the

covariates between the two groups to address this issue.
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2.1 Propensity Score Framework

Suppose there is a random sample of size n from a population. For the ith unit

in the sample, let Ti denote which treatment was received, where Ti = 0 denotes the

ith unit receiving the control treatment, and Ti = 1 denotes the ith unit receiving

the treatment of interest. Let Yi(0) and Yi(1) denote the potential outcomes of the

control treatment and the treatment of interest, respectively. Let

Yi = TiYi(1) + (1− Ti)Yi(0)

denote the outcome observed for the ith unit. The issue is that only one outcome

or the other is observed, never both. These responses are used in the estimation of

treatment effects. The goal of these studies is to evaluate different estimators for the

average treatment effect in the population and the average treatment effect of the

treated units. The average treatment effect (ATE) is defined as [1]

τ = E[Yi(1)− Yi(0)].

The average treatment effect for the treated (ATT) is defined as,

τt = E[Yi(1)− Yi(0) | Ti = 1], (1)

which will be the focus of this paper. Each unit will also have a K-dimensional

vector of pre-treatment covariates, denoted Xi. Throughout this paper, assume that

3



treatment assignment is strongly ignorable. This is made up of three assumptions

[6][13].

Assumption 1. (Unconfoundedness) For any unit i = 1, . . . , n,

P (Ti = 1 | Yi(0), Yi(1), Xi) = P (Ti = 1 | Xi) (2)

or, using conditional independence notation

Ti ⊥⊥ (Yi(0), Yi(1)) | Xi

Assumption 2. (Probabilistic Assignment) For any unit i = 1, . . . , n,

0 < P (Ti = 1 | Xi) < 1

0 < π(Xi) < 1

Assumption 3. (Individualistic) For any unit i = 1, . . . , n, the probability of treat-

ment assignment can be written as a common function of the ith’s unit potential

outcome and observed covariates.

The first assumption above implies that the treatment assignment is condition-

ally independent of the outcome when conditioned on the covariates. The main idea

is that when conditioning on the observed pre-treatment covariates, Xi, the responses

Y (0) and Y (1) have no effect on the probability of receiving treatment.

The second assumption is that the probability of a unit receiving the treatment
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of interest, conditional on the covariates, is between, but not including, 0 and 1. If

the probability was equal to 1, the probability of receiving the control treatment

would be 0. That means there would be no units receiving the control treatment at

that level of Xi, and as a result, no comparisons could be made. Similar reasoning

can be used as to why the probability above cannot equal 0. This assumption is

essential when using the propensity score, and will be discussed futher later in the

paper.

The third assumption implies that treatment assignment of a given unit depends

only on a function of the observed covariates. This foundation leads us into discussing

the propensity score.

3 The Propensity Score

As previously mentioned, the propensity score is a key part of many covariate

balancing methods. In observational studies, the treated and control groups may

have different distributions of covariates. The goal is to balance these distributions,

so that the researcher can make unbiased estimates of the treatment effect, which

can be done by conditioning on a balancing score.

Definition 3.1. (Balancing Score) A balancing score b(x) is a function of the co-

variates such that

Ti ⊥⊥ Xi | b(Xi).
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This can also be represented as a probability,

P (Ti = 1 | Xi, b(Xi)) = P (Ti = 1 | b(Xi)). (3)

Balancing scores are not unique. For example, one of the most basic balancing

scores is the function b(Xi) = Xi. Typically, this is not used in practice because Xi

has the potential to have a very high dimensionality. Ideally, the balancing score will

be low dimensional. This leads to a one dimensional balancing score, the propensity

score. The propensity score is defined by Rubin and Rosenbaum. [6]

Definition 3.2. (Propensity Score) The Propensity Score is the conditional prob-

ability that a unit with observed covariates, Xi, will be in treatment group 1. The

propensity core, π(Xi), is then,

π(Xi) = P (Ti = 1 | Xi). (4)

In RCT’s the propensity score is known, but it is unknown in observational

studies, so it must be estimated. This is usually done using a logistic regression

model, which will be discussed later. The propensity score must be shown to be a

balancing score.

Theorem 1 . (Propensity Score is a balancing score) The propensity score π(Xi) =

P (T = 1|Xi = x) is a balancing score.

Proof. It must be shown that the propensity score is a balancing score, which by
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equation (3),

P (Ti = 1 | Xi, π(Xi)) = P (Ti = 1 | π(Xi)). (5)

First, lets look at the left side (5). Since π(Xi) is a function of Xi, the left side can

be written as follows,

P (Ti = 1 | Xi, π(Xi)) = P (Ti = 1 | Xi)

= π(Xi).

It now must be shown that the right side of (5) is also equal to π(Xi).

P (Ti = 1 | π(Xi)) = 1 · P (Ti = 1 | π(Xi)) + 0

= 1 · P (Ti = 1 | π(Xi)) + 0 · P (Ti = 0 | π(Xi))

= ET [Ti | π(Xi)]

= EX

[
ET [Ti | Xi, π(Xi)] | π(Xi)

]
= EX

[
P (Ti = 1 | Xi, π(Xi)) | π(Xi)

]
= EX

[
P (Ti = 1 | Xi) | π(Xi)

]
= EX

[
π(Xi) | π(Xi)

]
= π(Xi).

By showing that both sides meet in the middle at π(Xi), it has been shown that

P (Ti = 1 | Xi, π(Xi)) = P (Ti = 1 | π(Xi)). Thus, π(Xi) is a balancing score.
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Now, it is of interest to show that if the unconfoundedness assumption holds

for X, then it also holds for any balancing score.

Theorem 2 . (Unconfoundedness given any balancing score)

Suppose Assumption 1 is true. Then, treatment assignment is unconfounded given

any balancing score,

P (Ti = 1 | Yi(0), Yi(1), b(Xi)) = P (Ti = 1 | b(Xi))

or, using conditional independence notation

Ti ⊥⊥ (Yi(0), Yi(1)) | b(Xi).

Proof. Let Assumption 1 be true. It must be shown that

P (Ti = 1 | Yi(0), Yi(1), b(Xi)) = P (Ti = 1 | b(Xi)). (6)

Beginning with the left side of (6),

P (Ti = 1 | Yi(0), Yi(1), b(Xi)) = 1 · P (Ti = 1 | Yi(0), Yi(1), b(Xi))+

0 · P (Ti = 0 | Yi(0), Yi(1), b(Xi))

= ET [Ti | Yi(0), Yi(1), b(Xi)]

= EX

[
ET [Ti | Yi(0), Yi(1), Xi, b(Xi)] | Yi(0), Yi(1), b(Xi)

]

Now lets look at the internal expectation. By conditioning on Xi and letting As-
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sumption 1 be true,

ET [Ti | Yi(0), Yi(1), Xi, b(Xi)] = ET [Ti | Xi, b(Xi)] .

Then, by (3),

ET [Ti | Yi(0), Yi(1), Xi, b(Xi)] = ET [Ti | b(Xi)]

Thus,

EX

[
ET [Ti | Yi(0), Yi(1), Xi, b(Xi)] | Yi(0), Yi(1), b(Xi)

]
=

EX

[
ET [Ti | b(Xi)] | Yi(0), Yi(1), b(Xi)

]

But, since the expectation is with respect to X, and by Assumption 1,

EX

[
ET [Ti | b(Xi)] | Yi(0), Yi(1), b(Xi)

]
= EX

[
ET [Ti | b(Xi)] | b(Xi)

]
= ET [Ti | b(Xi)]

= 1 · P (Ti = 1 | b(Xi)) + 0 · P (Ti = 0 | b(Xi))

= P (Ti = 1 | b(Xi)).

Thus, P (Ti = 1 | Yi(0), Yi(1), b(Xi)) = P (Ti = 1 | b(Xi)). So if Assumption 1 holds

for X, it also holds for any balancing score.

The implication of this result is that all bias that was associated with confounding
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due to the covariates has been removed.

4 Logistic Regression and Estimating the Propen-

sity Score

In observational studies, the propensity score is unknown, and thus, must be

estimated. Logistic regression is one way to do this, and will be the method used in

this paper. By definition, the propensity score is

π(Xi) = P (Ti = 1 | Xi) = E[Ti | Xi],

since Ti is a Bernoulli random variable. The binary logistic regression response

function is [11]

π(Xi) =
exp(X ′iβ)

1 + exp(X ′iβ)
, (7)

where Xi is vector of pre-treatment observed covariates for the ith unit, and β is the

vector of parameters. To find the fitted response function, estimates of β must be

found. This is done with most likely estimators (MLE’s). Since Ti is a Bernoulli

random variable, the likelihood function can then be written as

L(β) =
n∏
i=1

π(Xi)
Ti · (1− π(Xi))

1−Ti
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Then the log-likelihood function for the model is

l(β) = ln(L(β)) = ln
( n∏
i=1

π(Xi)
Ti · (1− π(Xi))

1−Ti
)

=
n∑
i=1

ln
(
π(Xi)

Ti · (1− π(Xi))
1−Ti

)
=

n∑
i=1

(
Ti · ln(π(Xi)) + (1− Ti) · ln(1− π(Xi))

)
. (8)

Equation (8) will be referred to again in the covariate balancing propensity score

method, which is discussed later in this paper. To derive the MLE’s for β, the

partial derivative of the log-likelihood function with respect to β is taken. Note that

π(Xi) is a function of β.

∂l

∂β
=

n∑
i=1

( Ti
π(Xi)

· π′(Xi) +
1− Ti

1− π(Xi)
· −π′(Xi)

)
(9)

This derivative is set equal to 0 and solved for b0, b1, ..., bp, which maximize our log-

likelihood function. This can be verified with a second derivative test. Then the

fitted logistic response function is

π̂(Xi) =
exp(X ′ib)

1 + exp(X ′ib)

The fitted values are then the estimated propensity scores. The linearized model,

also referred to as the logit response function, is

ln

(
π(Xi)

1− π(Xi)

)
= Xiβ
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There are multiple methods in which the researcher can evaluate the performance of

a model. The deviance, or likelihood ratio statistic, is a measure of adequacy of a

given model, and will be used in fitting the propensity score model.

Definition 4.1. Let lr and lp be the log-likelihood functions for the reduced model

and the proposed model respectively. Then the likelihood ratio statistic, D, is

D = 2[lp − lr]

This statistic will be used to when deciding whether or not to include a covariate

into the propensity score model. Let lb, lp, and ln be the log-likelihood functions for

the current base model, the proposed model, and the null model, respectively. Let

Db and Dp be the deviance statistics for the base and proposed models respectively.

R will return the deviance statistics with respect to the null model such that

Db = 2[lb − ln],

Dp = 2[lp − ln].

The deviance between the base model and the proposed model is of interest, so

Db −Dp = 2[lb − ln]− 2[lp − ln],

= 2lb − 2ln − 2lp + 2ln,

= 2lb − 2ln,

= 2[lb − ln].
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This result is the likelihood ratio statistic between the current base model and the

proposed model, and will be used in the next section.

4.1 Estimating the Propensity Score

Throughout this paper, the propensity score was modeled using the program

R. One issue in modeling the propensity score is deciding which covariates should

be included, as well as deciding which higher order and interaction terms should be

included. This is done in a three step, iterative process. This process is discussed by

Rubin and Imbens [13].

4.1.1 Step 1: Selecting Scientifically Significant Covariates

The first step is to include all of the covariates that are deemed to be scien-

tifically significant factors. This is typically done in collaboration with an expert in

the field of study. The content used throughout this paper varies in content matter;

therefore, significant factors were estimated based on the authors judgment. At this

stage, these covariates are included in a linear manner.

4.1.2 Step 2: Selecting Statistically Significant Covariates

At this stage, any additional observed covariates that were not deemed scientif-

ically significant were considered. This step is done by an iterative process. A base

model is fit including all of the covariates from step 1. A new model is fit for each
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of the remaining variables, such that each of the predictors in the base model are in-

cluded, plus 1 additional unused variable. The likelihood ratio statistic is calculated

for each of the models with respect to the base model. If none of the test statistics

are greater than 1, then none of the covariates will be added to the model. If one

or more of the test statistics are greater than one, the covariate with the largest

test statistic is added to the base model. This process is repeated until none of the

test statistics are greater than 1, indicating that no more first order terms should be

added to the model.

4.1.3 Step 3: Selecting Quadratic and Interaction Terms

At this stage, the researcher will add quadratic and interaction terms. Higher

order terms are possible, but will not be included in the models in this paper. Accord-

ing to the hierarchical approach, only quadratic and interaction terms that include

covariates that are already included in the model will be considered. Again, if there

are interactions that are deemed to be scientifically significant, they will be included

in the model. If not, an iterative approach similar to step 2 is taken. The base model

is the final model from step 2. New models are fit with all of the terms thus far plus

one additional quadratic or interaction term. The likelihood ratio statistic is calcu-

lated for each of additional models. There must be more evidence for a second order

term to be included into the model, thus, likelihood ratio statistics will be compared

to the cutoff value of 2.71 in this stage. If none of the test statistics are greater than

2.71, then none of the second order terms are added to the model. If one or more test

statistics are greater than 2.71, the second order term with the largest test statistic
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is added to the model. This process is repeated until none of the test statistics are

greater than 2.71, which indicates that the model is complete.

4.2 Covariate Balancing Propensity Score

One of the main issues in many observational studies is that the researches do

not know whether or not the propensity score has been modeled correctly. Even

if the propensity score is adequately modeled, it is not ensured that the covariate

distributions will be balanced as a result. To check the validity of a propensity score

model, the researcher checks the resulting covariate balance. Researchers will then

change their model and check the resulting covariate balance again, and repeat this

process until they have obtained an acceptable covariate balance. The covariate

balancing propensity score (CBPS) estimates the propensity score and optimizes

covariate balance simultaneously. Traditionally, the parameters for the propensity

score are estimated by the MLE method, which maximize the likelihood function.

In the CBPS method, the parameters of the likelihood function are estimated by

the method of moments, while satisfying a balancing condition. First, look at the

likelihood function. The goal is to find estimates of β such that equation (8) is

maximized,

β̂MLE = arg max
β

[
n∑
i=1

(
Ti · log(π(Xi)) + (1− Ti) · log(1− π(Xi))

)]

15



Now, recall the partial derivative found in equation (9), which will be denoted here

as sβ(Ti, Xi),

1

n
sβ(Ti, Xi) =

1

n

∂l

∂β
=

1

n

n∑
i=1

( Ti
π(Xi)

· π′(Xi) +
1− Ti

1− π(Xi)
· −π′(Xi)

)
.

Then, for the ATT method, the parameters are estimated such that the following

balancing condition is met,

1

n1

n∑
i=1

(
Ti −

(1− Ti)π(Xi)

1− π(Xi)

)
X̃i = 0,

where X̃i is some function of Xi defined by the researcher [10]. In the CBPS method,

this is set to be Xi in order to balance the first moment of each covariate, or

X̃i = (XT
i (X2

i )T )T in order to balance the first two moments of each covariate.

Theoretically, this will result in better covariate balance between the treatment and

control groups. This is the condition that separates the CBPS method from tra-

ditional propensity score estimation. Even if the model is slightly mispecified, the

CBPS method will still obtain a better covartiate balance. The proof of this is outside

the scope of this paper.

5 Types of Covariate Balancing Methods

This section will look at 4 methods for estimating the ATT: matching, stratifi-

cation, inverse probability of treatment weighting, and entropy balancing.

16



5.1 Matching Methods

Matching on the propensity score involves forming matched sets of treated and

control units that have similar values of the propensity score. Within these matched

sets, the average treatment effect can be estimated. There are multiple methods

in finding matched sets, each made up of two parts. First, the researcher must

determine which distance metric they would like to implement. There are several

ways this can be done, but this paper will discuss mahalanobis distance and absolute

propensity score difference.

Definition 5.1. (Mahalanobis Distance): The mahalanobis distance is defined as

Dij = (Xi −Xj)
′Σ−1(Xi −Xj),

where Xi,Xj are p× 1 vectors of covariates for the ith and jth units respectively, and

Σ is the variance-covariance matrix of the covariates [13].

Definition 5.2. (Absolute Propensity Score Difference): This difference is defined

as,

Dij = |π(Xi)− π(Xj)|,

where π(Xi), π(Xj) are the estimated propensity scores for the ith and jth units

respectively [12].

Next, the researcher needs to decide how they would like to match the units
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based off of the chosen distance metric. This can be done in many different ways.

This paper will focus on 1 to 1 nearest-neighbor matching for both distance metrics.

In 1 to 1 matching, a treated unit is selected. Then, based on which distance metric

is being applied, the control unit with the smallest distance from the treated unit are

then matched together. Often the researcher will set some caliper for the distance.

For example, consider a scenario where the researcher set the caliper to be an absolute

propensity score difference of 0.05. Now, suppose a treated unit has a propensity

score of 0.85. Then, if there are no control units with an estimated propensity score

between 0.80 and 0.90, then no match can be made, and the unit is discarded. There

are a few more complex matching methods, but this paper will only be looking at

1 to 1 nearest neighbor matching with replacement, with and without calipers. To

estimate the ATT, the treated units are matched with control units, which means

some control units will be discarded. Once units are matched, the difference of the

response is measured. Then a simple average of that difference is the ATT.

5.1.1 Efficiency Bounds

The extremes of the propensity score are difficult to analyze, and result in

higher variance in the estimates for the ATT. A way to compensate for this issue is to

implement upper and lower bounds for the propensity score, where any propensity

score outside of these bounds are discarded. One way of doing this is to simply define

some level α, typically 0.1. As a result, the estimator will only look at propensity
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score values such that,

α ≤ π(Xi) ≤ 1− α.

A better way of obtaining these efficiency bounds is discussed by Crump [2].

Theorem 3 . Suppose that treatment assignment is strongly ignorable and the den-

sity of X is bounded away from zero and infinity. Suppose also that σ2
w(x) = σ2 for

all w ∈ 0, 1 and x ∈ X. Then the optimal subpopulation average treatment effect is

τS,A∗
H

, where

A∗H = {x ∈ X | α ≤ π(Xi) ≤ 1− α}.

If

sup
x∈X

1

π(Xi)1− π(Xi)
≤ 2E

[
1

π(Xi)1− π(Xi)

]
,

then α = 0 and A∗H = X. Otherwise, α is a solution to

1

α(1− α)
= 2E

[
1

π(Xi)1− π(Xi)

∣∣∣∣ 1

π(Xi)1− π(Xi)
≤ 1

α(1− α)

]
.

Removing these units with extreme propensity score values is called trimming.

The proof of this is outside the scope of this paper. Another way of obtaining these

bounds is by looking at the maximum and minimum estimated propensity scores

between the two groups. All treated units with estimated propensity scores less than
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the minimum estimated propensity score of the control units are discarded. Simi-

larly, all control units with estimated propensity scores greater than the maximum

estimated propensity score of the treated units are discarded. The second and third

trimming methods will be applied.

5.2 Stratification on the Propensity Score

Stratification on the propensity score involves splitting the units into mutually

exclusive subsets based on their propensity score. Units are first ordered by their

propensity scores. By the probabilistic property of the propensity score, these values

range from 0 to 1. Now suppose that the range of propensity score values is split

into J stratas, or subclasses. As discussed by Imbens and Rubin [13], the intervals

are defined such that

∪Ji=1 = [0, 1),

where b0 = 0 and bJ = 1. Units within each strata now have very similar propensity

scores, and are treated like they have roughly equal propensity scores. Within these

stratas, units will now theoretically have a better covariate balance between the

treated and control groups. Now, let nc(j) and nt(j) be the number of control units

and treated units respectively in the jth stratum, and let q(j) be the fraction of units

in the jth stratum. Now, within each strata, the strata specific average treatment,
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τdif (j), can be estimated. This is defined to be

τdiff (j) = Ȳt(j)− Ȳc(j),

where

Ȳt(j) =
1

nt(j)

n∑
i=1

Ti ·Bi(j) · Yi and Ȳc(j) =
1

nc(j)

n∑
i=1

(1− Ti) ·Bi(j) · Yi.

Bi(j) is an indicator variable where 1 indicates the unit is in the jth stratum, and

a 0 if not. Once each strata specific treatment effect is estimated, then the overall

average treatment effect can be estimated.

τstrat =
J∑
j=1

q(j) · τdiff (j)

Now, there are multiple ways that the units can be stratified, a common one being

splitting the units into quintiles. These quintiles can be split in a way that would

result in each stratum containing the same range of propensity score values. Another

way to split the quintiles is so the stratum will have roughly equal proportions in

each quintile. The units within each quintile will have similar propensity score values,

allowing one to make direct comparisons to determine the average treatment effect.

It may also be of interest to find the average treatment effect in subpopulations of

the data. This can be done when using stratification.

21



5.3 Inverse Probability of Treatment Weighting Using the

Propensity Score

Re-weighting is a process that re-assigns the weight based on the propensity

score for each unit. In this re-weighting scheme, the ATT can be estimated with the

following estimator,

τW,ATT =
1

n

n∑
i=1

TiYi −
1

n

n∑
i=1

(1− Ti)Yiπ(Xi)

1− π(Xi)
, (10)

where π(Xi) is the estimated propensity score, as discussed by Austin [1]. τW,ATT is

an unbiased estimator for the ATT, which is

E[τW,ATT ] = E[Yi(1)− Yi(0)|Ti = 1].

Proof. Recall, the unconfoundedness assumption says P (Ti = 1 | Yi(0), Yi(1), Xi) =

P (Ti = 1 | Xi). Then

E[τ̂W,ATT ] = E

[
1

n

n∑
i=1

TiYi −
1

n

n∑
i=1

(1− Ti)Yiπ(Xi)

1− π(Xi)

]

= E

[
1

n

n∑
i=1

TiYi

]
− E

[
1

n

n∑
i=1

(1− Ti)Yiπ(Xi)

1− π(Xi)

]
.
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First, focus on the left expectation.

E

[
1

n

n∑
i=1

TiYi

]
=

1

n

n∑
i=1

E [TiYi]

.

Now since T is a binary treatment, T can only take on the values 0 or 1. This term

only has a value when T = 1, so Y will only take on the value Y (1). Now,

E

[
1

n

n∑
i=1

TiYi

]
=

1

n

n∑
i=1

E[Yi(1)|T = 1]

= E[Y (1)|T = 1].

Now lets look at the other expectation. By similar logic as above, this term is 0

when Ti = 0, so treat Yi as Yi(0).

E

[
1

n

n∑
i=1

(1− Ti)Yiπ(Xi)

1− π(Xi)

]
=

1

n

n∑
i=1

E

[
(1− Ti)Yi(0)π(Xi)

1− π(Xi)

]
= EX

[
E

[
(1− Ti)Yi(0)π(Xi)

1− π(Xi)
| Xi

]]
= EX

[
π(Xi)

1− π(Xi)
E [(1− Ti)Yi(0) | Xi]

]
.

By the unconfoundedness assumption, 1−Ti and Yi can be split into two expectations.

E

[
1

n

n∑
i=1

(1− Ti)Yiπ(Xi)

1− π(Xi)

]
= EX

[
π(Xi)

1− π(Xi)
· E [(1− Ti) | Xi] · E [Yi(0) | Xi]

]
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But since Ti is discrete,

E[(1− Ti) | Xi] = (1− 0) · P (T = 0 | Xi) + (1− 1) · P (T = 1 | Xi)

= P (T = 0 | Xi)

= 1− P (T = 1 | Xi)

= 1− π(Xi).

Then,

E

[
1

n

n∑
i=1

(1− Ti)Yiπ(Xi)

1− π(Xi)

]
= EX

[
π(Xi)

1− π(Xi)
· (1− π(Xi)) · E[Yi(0) | Xi]

]
= EX [π(Xi) · E[Yi(0) |Xi]]

= EX [P (T = 1 | Xi) · E[Yi(0) |Xi]]

= EX [E[Ti | Xi] · E[Yi(0) | Xi]] .

Now again, by the unconfoundedness assumption,inner expectations together can be

pushed together. This results in

E

[
1

n

n∑
i=1

(1− Ti)Yiπ(Xi)

1− π(Xi)

]
= EX [E[Ti · Yi(0) | Xi]]

= E[Ti · Yi(0)]

= E[Y (0) | T = 1].
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Finally,

E[τ̂W,ATT ] = E

[
1

n

n∑
i=1

TiYi

]
− E

[
1

n

n∑
i=1

(1− Ti)Yiπ(Xi)

1− π(Xi)

]

= E[Y (1) | T = 1]− E[Y (0) | T = 1]

= E[Y (1)− Y (0) | T = 1].

Thus, τW,ATT is an unbiased estimator of the average treatment effect.

It can also be thought of as a re-weight of each individual uint, such that,

wi = Ti +
(1− Ti)π(Xi)

1− π(Xi)
.

Essentially, Ti and 1− Ti are indicators. Then treated units are not re-weighted and

control units are re-weighted as π(Xi)
1−π(Xi)

. Once re-weighted, a simple difference in

means can estimate the ATT.

5.4 Entropy Balancing

Entropy balancing is a re-weighting scheme with a slightly different approach

than the other methods discussed. If the researcher is using traditional propensity

score methods, then they will be applying an iterative process. The researcher will

develop a model and test the resulting covariate balance, then make some adjustment

to the model in hopes of improving the covariate balance. This process is repeated

until an acceptable balance is obtained. Entropy balancing takes a different approach
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to obtaining balanced covariate distributions. Similar to the idea of the CBPS, the

researcher can designate 1 or more balancing constraints on the sample moments,

typically the first two moments. These constraints will balance the the covariate

distributions between the treated and control groups in both mean and variance.

To derive these new weights, the loss function and balancing constraints need to be

defined. The loss function is defined to be

h(wi) = wi · ln(
wi
qi

),

where wi is the new estimated weight and qi is the base weight, typically 1
n
. The

first constraint is the balancing constraint. These constraints are applied in order

to balance the covariate distribution between the treated and control groups. The

balancing constraint is defined to be

∑
i|T=0

wi · cri(Xi) = mr with r ∈ 1, ..., R.

R is the set of balance constraints identified by the researcher, cri(Xi) is the function

that describes the balancing constraints defined, and mr is the rth order moment

of the variable X [9]. Typically, cri(Xij) = Xr
ij or cri(Xij) = (Xij − µj)

r. The

literature is unclear on specifically how many moment conditions to balance, but

this paper focuses on the first two moments, r = {1, 2}. The other constraints are

the normalizing constraints. These constraints ensure that our new weights sum to
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one, and are strictly positive. They are defined as follows:

∑
i|T=0

wi = 1 and wi ≥ 0 for all i such that T = 0.

The goal now is to minimize the loss function with the constraints mentioned above.

This can be done by using the method of lagrange multipliers.

L =
∑
i|T=0

wi · ln(
wi
qi

) +
R∑
r=1

λr

( ∑
i|T=0

wi · cri(Xi)−mr

)
+ (λ0 − 1)

( ∑
i|T=0

wi − 1
)
.

Now, find the partial derivative with respect to wi and set it equal to 0.

∂L

∂wi
= ln(

wi
qi

) + 1 +
( R∑
r=1

λrcri(Xi)
)

+ (λ0 − 1)

0 = ln(wi)− ln(qi) +
( R∑
r=1

λrcri(Xi)
)

+ λ0

ln(wi) = ln(qi)−
( R∑
r=1

λrcri(Xi)
)
− λ0

wi = qi · exp
(
−

R∑
r=1

λrcri(Xi)
)
· exp(−λ0)
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The weights must sum to 1, so a new w∗i is obtained such that,

w∗i =
wi∑

i|T=0wi

=
qi ∗ exp

(
−
∑R

r=1 λrcri(Xi)
)
∗ exp(−λ0)∑

i|T=0 qi ∗ exp
(
−
∑R

r=1 λrcri(Xi)
)
∗ exp(−λ0)

=
qi ∗ exp

(
−
∑R

r=1 λrcri(Xi)
)

∑
i|T=0 qi ∗ exp

(
−
∑R

r=1 λrcri(Xi)
) .

Typically, equalizing the first two moments are of interest, so the weight simplifies

to

w∗i =
qi ∗ exp(−λ1c1i(Xi)− λ2c2i(Xi))

Σ{i|T=0}qi ∗ exp(−λ1c1i(Xi)− λ2c2i(Xi))
,

Re-weighting with R = 2 ensures that when each unit gets re-weighted, the sample

mean and sample variance between the treated and control groups will be equal.

This should result in a better estimate of the ATT.

6 Evaluating the Methods

This section explores the performance of each estimation method using the

traditional propensity score and the CBPS. The methods are applied in two dif-

ferent settings, a simulation study and empirical data. This paper focuses on an
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observational study conducted on breast cancer treatments.

6.1 Simulations

Four simulation designs were considered, each of which applied all of the meth-

ods discussed in this paper. Each design design used 3 pre-treatment variables for

1000 iterations.

Design Description
A 50 treatment units, 100 control units, equal variance-covariance matrices
B 250 treatment units, 250 control units, equal variance-covariance matrices
C 50 treatment units, 100 control units, unequal variance-covariance matrices
D 250 treatment units, 250 control units, unequal variance-covariance matrices

For design A and B, the variance-covariance matrices are as follows.

ΣT=1 = ΣT=0 = 
1 0 0

0 1 0

0 0 1


Design C and D will have different variances between the two groups, with variance-

covariance matrix,

ΣT=1 = 
1.5 0 0

0 1.5 0

0 0 1.5


and
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ΣT=0 = 
0.5 0 0

0 0.5 0

0 0 0.5


For each design, the means will be,

µT=1 = [0, 0, 0]′ µT=0 = [0.4, 0.4, 0.4]′.

First, the raw estimate for the ATT was collected, each of the methods discussed

in this paper was tested. A key for the method abbreviations is located in the

appendix. The outcome variable was simulated as Yi = X1i +X2i +X3i + ε, where ε

is distributed N(0, (0.5)2).

6.2 Design A Results

RAW PSM PSMC PSTMC PSTMO MD STRT1 STRT2
Bias -121.26 -2.75 0.53 0.44 0.72 -18.26 -11.96 -12.66
MSE 155.96 1.76 1.53 1.66 1.61 4.84 3.05 3.18

WPS CBMat1 CBMat2 CBMat3 CBMat4 CBWPS EB
Bias -0.53 -3.95 -1.20 -1.15 -1.36 0.04 -0.95
MSE 3.08 1.84 1.69 1.82 1.77 0.24 0.26

Table 1: Design A Results

Table 1 shows the results of the simulation from the first setting. The RAW

estimate is by far the most biased and also has the highest mean squared error (MSE).

The PSM method performs fairly well both in terms of bias and MSE. This method
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is greatly improved when a caliper is set, which can be seen in the performance of the

remaining three propensity score methods. PSMC, PSTMC, and PSTMO all perform

fairly similarly. With the exception of CBWPS, these methods perform better than

the remaining methods. Besides the raw estimate, the MD method performs the

worst, both in terms of bias and MSE. Here, both of the stratification methods also

perform very poorly. The WPS method is very accurate, but not quite as precise as

some of the other methods. The next four methods shown are the same matching

methods, except using the covariate balancing propensity score. These methods

turn out to perform slightly worse than the normal propensity score. CBWPS, on

the other hand, performs the best out of all of the methods in this design, both in

terms of bias and MSE. Entropy balancing is slightly worse in terms of bias, but very

good in MSE. In this setting, CBWPS is the best method.

6.3 Design B Results

RAW PSM PSMC PSTMC PSTMO MD STRT1 STRT2
Bias -120.17 -1.52 -0.10 -0.24 0.06 -12.09 -10.33 -12.27
MSE 146.74 0.26 0.19 0.19 0.18 1.70 1.38 1.84

WPS CBMat1 CBMat2 CBMat3 CBMat4 CBWPS EB
Bias -0.02 -1.93 -0.53 -0.58 -0.43 0.01 -0.12
MSE 1.25 0.27 0.19 0.20 0.20 0.07 0.07

Table 2: Design B Results

In design B, each estimator performs significantly better, which was to be ex-

pected with the larger sample size. PSTMO and WPS both perform much better
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than in design A. The MSE for each method is much smaller in each of the CB-

Mat methods. Similar to design A, CBWPS outperforms the other methods by a

considerable amount, both in terms of bias and MSE.

6.4 Design C Results

RAW PSM PSMC PSTMC PSTMO MD STRT1 STRT2
Bias -121.05 -23.04 0.24 -2.58 0.82 -43.61 1.36 -13.60
MSE 156.31 9.32 1.42 2.50 1.57 22.23 1.55 3.36

WPS CBMat1 CBMat2 CBMat3 CBMat4 CBWPS EB
Bias -49.79 -25.07 -1.03 -2.28 -1.33 -0.09 -0.83
MSE 28.36 10.64 1.91 2.65 2.22 0.36 0.37

Table 3: Design C Results

There are some very interesting results in this section. PSM, MD, WPS, and

CBMat1 all perform much worse in this setting, but there is great improvement in

STRT1. Again, CBWPS outperforms the other methods.

6.5 Design D Results

RAW PSM PSMC PSTMC PSTMO MD STRT1 STRT2
Bias -119.56 -15.78 -0.56 -1.45 -0.18 -34.54 -9.54 -12.63
MSE 145.44 3.60 0.21 0.38 0.19 12.75 1.31 1.96

WPS CBMat1 CBMat2 CBMat3 CBMat4 CBWPS EB
Bias -57.87 -15.62 -0.46 -0.77 0.50 -0.09 -0.20
MSE 34.45 3.61 0.26 0.28 0.23 0.10 0.10

Table 4: Design D Results
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The result of this design is similar to the others. The propensity score matching

methods that are using calipers perform well. The EB method performs very well

in this setting as well. Similar to the other three settings, CBWPS outperforms the

other methods.

6.6 Simulations Conclusion

The most apparent conclusion is that CBWPS is the best estimator in the

experimental designs that were tested. This is the method that uses the inverse

probability weighting method when using the covariate balancing propensity score.

Entropy balancing and matching, with a caliper and trimming, also performed very

well in each of the 4 settings. In designs A,B, and C, the matching methods that

used the traditional propensity score outperformed the CBPS. There were very good

results when using the 1-1 nearest neighbor matching with a caliper of 0.1 method,

and applying the third trimming method in design B. Mahalanobis distance match-

ing performed very poorly in each of the 4 designs. Stratification also performed

fairly poorly in each setting. The only exception was in design setting C, where

stratification with equal proportions in each strata performed relatively well. Now,

these methods will be applied to an observational study.
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7 German Breast Cancer Study Group Study

During the 1980’s in Germany, mastectomies were the common choice of treat-

ment for breast cancer. An alternative method was breast conservation surgery. This

method removes only a portion of the breast, as opposed to the entire breast in a

mastectomy. The German Breast Cancer Study Group conducted an observational

study for the purpose of estimating the average treatment effect of the mastectomies

versus breast conservation methods on patients emotional and physical status. Both

emotional and physical status are obtained via a self reported survey. The data was

obtained from the R package ”nonrandom” and is obtained using the data(”stu1”)

command. The data obtained consists of n = 646 patients, a subset of the original

data, the head of which and the summary statistics are shown below. The data

contains n0 = 479 mastectomy patients and n1 = 167 breast conservation patients.

A description of the variables is located in the appendix.

Table 5: Head of the stu1 data

klinik tmass therapie alter tgr age ewb pst mp
1 3 -7.76 0 -11.91 1 1 63.46 81.25 0
2 3 -4.76 0 -4.91 1 1 90.38 93.75 0
3 4 -3.76 0 -14.91 1 1 73.08 93.75 1
4 6 -7.76 0 -0.91 1 1 75.00 81.25 1
5 6 -3.76 0 -1.91 1 1 34.62 56.25 1
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Table 6: Continuous Predictor Variables

Table 7: Sample Means

tmass alter
Breast Conservation 14.47 59.41

Mastectomy 13.51 52.00

Table 8: Sample Standard Deviations

tmass alter
Breast Conservation 4.40 11.50

Mastectomy 3.64 10.40

Table 9: Sample Conditional Proportions of Categorical Variables

mp tgr age
< 15 ≥ 15 ≤ 10mm > 10mm ≤ 55 > 55

Breast Conservation 0.5449 0.4551 0.1796 0.8204 0.3353 0.6647
Mastectomy 0.4405 0.5595 0.2714 0.7286 0.6138 0.3862

To obtain an unbiased estimate of treatment effects, the pre-treatment covari-

ates need to be balanced between the treatment and control groups. The summary

statistics above show that the variable ”alter” is significantly different between the

breast conservation and mastectomy groups. The categorical variable proportions

differ between the two groups, most significantly between the variable ”age”. With

these differences, the raw difference in mean responses could introduce a significant

amount of bias.
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7.1 Estimating the Propensity Score Model

Recall, to estimate the propensity score,

1. Include scientifically significant predictor variables,

2. Include statistically significant predictor variables,

3. Selecting quadratic and interaction terms.

Due to the small number of pre-treatment covariates, step 1 was skipped. Jumping

directly to step 2, the iterative process found the following likelihood ratio statistics.

Step
tmass 6.53 4.28 5.11 -
alter 52.07 - - -
mp 5.42 6.44 - -
tgr 5.87 4.14 4.39 0.25
age 38.96 0.05 0.03 0.01

Table 10: Likelihood Ratio Statistics

After three iterations, the variables alter, mp, and tmass are the three linear terms in

the logistic regression model. By the hierarchical approach, only the three variables

in the model will be considered in step 3.

Step
alter2 0.86 0.76

alter ∗many pat 0.38 0.38
alter ∗ tmass 0.19 0.17

many pat ∗ tmass 0.06 0.22
tmass2 3.98 -

Table 11: Likelihood Ratio Statistics
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In step 3, tmass2 was identified as a significant predictor to the model. The

resulting estimated logit propensity score function is,

ln

(
π(Xi)

1− π(Xi)

)
= −0.756+0.059·alter−0.495·many pat+0.041·tmass−0.010·tmass2.

The CBPS is esimated with CBPS package with the CBPS function in R. The logit

CPBS function is,

ln

(
πCB(Xi)

1− πCB(Xi)

)
= −0.780+057 ·alter−0.476 ·mp+0.044 · tmass−0.009 · tmass2

7.2 ATT Estimates for pst and ewb

Estimates for the ATT of getting a mastectomy versus breast conservation meth-

ods on physical and emotional status were calculated for the raw estimates and the

three best performing methods from the simulations section.

RAW PSTMO CBWPS EB
ATT -1.59 -1.67 -1.15 1.73

Table 12: ATT Estimates for pst

RAW PSTMO CBWPS EB
ATT 0.09 0.44 0.19 0.33

Table 13: ATT Estimates for ewb

The CBWPS method was clearly the best estimator from the simulation section.

Also shown in the simulation section, the raw estimate can be very biased. The raw
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estimate for the ATT of mastectomies on physical status is an average increase of

-1.59 units. The inverse probability weighting method using the covariate balancing

propensity score estimates that the difference is less than that, being an a decrease

of 1.15 units. The entropy balancing method finds an interesting result. Where the

raw, matching, and IPW estimates found a decrease in physical status, the entropy

balancing method finds an increase of 1.73 units. The raw estimate for the ATT of

mastectomies on emotional status is nearly 0, implying that patients are, on average,

reporting the same emotional status. The other three methods shown estimate a very

slight increase in emotional status. In these two scenarios, the raw estimate is fairly

close to the estimation methods discussed in this paper. The raw estimate is biased

when there is a large imbalance between the predictor variables, and those predictor

variables have a significant confounding effect. This could be an explanation for the

similarities in the raw estimate and the estimators in this section.

8 Conclusion

The propensity score is the probability of receiving treatment conditional on

the observed, pre-treatment covariates. This value is used as a balancing score, so

the treated and control groups in observational or non randomized studies can be

compared. These comparisons can be made in a variety of ways, including matching,

stratification, weighting, and entropy balancing. Once these comparisons are made,

the average treatment effect can be calculated. These estimation methods perform

differently throughout different settings. The inverse probability weighting using the
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covariate balancing propensity score performed the best in the limited designs that

were explored. The researcher should be cautious before accepting a result obtained

from a single estimation method.

8.1 Future Research

The purpose of this paper was to explore causal inference estimators in only a

few experimental designs. Future research can be applied to exploring a wider variety

of scenarios and a deeper look at the features of each of the methods, to gain a better

understanding of which estimators should be used in which setting. R codes used for

simulation and estimation can be found at https://github.com/kbrown1224/Thesis-

Codes.
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9 Appendix

Description
klinik categorical variable the clinic center
tmass numeric variable indicating tumor size in mm
alter numeric variable indicating age
therapie binary treatment variable, 0 if the patient received a mastectomy, 1 if the patient

received breast conservation
tgr categorical variable indicating tumor size, 1 if the tumor size ≤ 10 mm, 0

if the tumor size > 10 mm
age categorical variable indicating age, 1 if the patient is ≤ 55 years old, 0 if the patient

is > 55 years old
ewb numeric response variable indicating emotional status
pst numeric response variable indicating physical status
mp categorical variable indicating how many patients that units clinic had, 1 if ≥

15 patients, 0 if < 15 patients

Table 14: Description of stu1 Dataset
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Description
Raw Raw difference in the average response value, Y
PSM Propensity score matching, with 1-1 nearest neighbor matching without a caliper
PSMC Propensity score matching, with 1-1 nearest neighbor matching with caliper = 0.1
PSTMC Propensity score matching, with 1-1 nearest neighbor matching, with caliper = 0.1,

and trimming according to Crump’s lemma
PSTMO Propensity score matching, with 1-1 nearest neighbor matching, caliper = 0.1,

and trimming according to 3rd trimmning method discussed
MD Mahalanobis distance matching
STRT1 Stratification, quintiles with roughly equal proportions in each strata
STRT2 Stratification, quintiles with equal ranges of propensity score
WPS Inverse probability weighting
CBMat1 PSM using CBPS
CBMat2 PSMC using CBPS
CBMat3 PSTMC using CBPS
CBMat4 PSTMO using CBPS
CBWPS WPS using CBPS
EB Entropy balancing

Table 15: Description of Method Abbreviations
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