
Comparing Causal Inference Estimators for
Average Treatment Effect of Treated Units in

Observational Studies

Kip Brown

kibrown@siue.edu
Department of Mathematics and Statistics
Southern Illinois University Edwardsville

March 6, 2018

Kip Brown (SIUE) Causal Inference March 6, 2018 1 / 55



Overview

1 Problem Set Up
Definitions and Assumptions
Propensity Score Framework
Estimating the Propensity Score
Covariate Balancing Propensity Score

2 Causal Inference Methods
Matching Methods
Stratification
Inverse Probability of Treatment Weighting
Entropy Balancing

3 Simulations

4 Empirical Study

Kip Brown (SIUE) Causal Inference March 6, 2018 2 / 55



Problem Set Up

Randomized vs. Observational Studies

Randomized studies balance covariate distribution by design
Observational studies may have unbalanced covariate
distributions
This leads to biased estimates
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Problem Set Up Definitions and Assumptions

The Response Function

Definition
Suppose we have a random sample of size n from a population. For
the ith unit in the sample, let Ti denote which treatment was received,
where Ti = 0 denotes the ith unit receiving the control treatment, and
Ti = 1 denote the ith unit receiving the treatment of interest. Let Yi(0)
and Yi(1) denote the outcomes of the control treatment and the
treatment of interest, respectively. Let

Yi = TiYi(1) + (1− Ti)Yi(0) (1)

denote the response of the ith unit.
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Problem Set Up Definitions and Assumptions

Treatment Effects

Definition
Let the average treatment effect (ATE) be defined as

τ = E[Yi(1)− Yi(0)].

Let the average treatment effect for the treated (ATT) be defined as,

τt = E[Yi(1)− Yi(0) | Ti = 1]. (2)
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Problem Set Up Definitions and Assumptions

Major Assumptions

Assumption
(Unconfoundedness) For any unit i = 1, . . . , n,

P (Ti = 1 | Yi(0), Yi(1), Xi) = P (Ti = 1 | Xi) (3)

or, using conditional independence notation

Ti ⊥⊥ (Yi(0), Yi(1)) | Xi

Assumption
(Probabilistic Assignment) For any unit i = 1, . . . , n,

0 < P (Ti = 1 | Xi) < 1
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Problem Set Up Definitions and Assumptions

Major Assumptions Continued

Assumption
(Individualistic) For any unit i = 1, . . . , n, the probability of treatment
assignment can be written as a common function of the ith’s unit
potential outcome and observed covariates.
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Problem Set Up Propensity Score Framework

Balancing Scores

Definition
(Balancing Score) A balancing score b(x) is a function of the
covariates such that

Ti ⊥⊥ Xi | b(Xi).

This can also be represented as a probability,

P (Ti = 1 | Xi, b(Xi)) = P (Ti = 1 | b(Xi)). (4)

ie: Xi is a balancing score
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Problem Set Up Propensity Score Framework

A Better Balancing Score

Definition
(Propensity Score) The Propensity Score is the conditional probability
that a unit with observed covariates, x, will be in treatment group 1.
The Propensity Score π(Xi) is then,

π(Xi) = P (Ti = 1 | Xi = x). (5)
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Problem Set Up Propensity Score Framework

Propensity Score Theorems

Theorem
(Propensity Score is a balancing score) The propensity score
π(Xi) = P (T = 1|Xi = x) is a balancing score.
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Problem Set Up Propensity Score Framework

Theorem 1 Proof

Proof.
We must show that the propensity score is a balancing score, which by
equation (4),

P (Ti = 1 | Xi, π(Xi)) = P (Ti = 1 | π(Xi)). (6)

Starting with the left side of (6), we have

P (Ti = 1 | Xi, π(Xi)) = P (Ti = 1 | Xi)

= π(Xi).
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Problem Set Up Propensity Score Framework

Proof Continued

Proof.
Now with the right side of (6), we have

P (Ti = 1 | π(Xi)) = 1 · P (Ti = 1 | π(Xi)) + 0

= 1 · P (Ti = 1 | π(Xi)) + 0 · P (Ti = 0 | π(Xi))

= ET [Ti | π(Xi)]

= EX

[
ET [Ti | Xi, π(Xi)] | π(Xi)

]
= EX

[
P (Ti | Xi, π(Xi)) | π(Xi)

]
= EX

[
π(Xi) | π(Xi)

]
= π(Xi).

Thus, π(Xi) is a balancing score.
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Problem Set Up Propensity Score Framework

Propensity Score Theorems

Theorem
(Unconfoundedness given any balancing score)
Suppose Assumption 1 is true. Then, treatment assignment is
unconfounded given any balancing score,

P (Ti = 1 | Yi(0), Yi(1), b(Xi)) = P (Ti = 1 | b(Xi)) (7)

or, using conditional independence notation

Ti ⊥⊥ (Yi(0), Yi(1)) | b(Xi).
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Problem Set Up Propensity Score Framework

Theorem 2 Proof

Proof.
Let Assumption 1 be true. We will start with the left side of (7), and
show the right.

P (Ti = 1 | Yi(0), Yi(1), b(Xi))

= ET [Ti | Yi(0), Yi(1), b(Xi)]

= EX

[
ET [Ti | Yi(0), Yi(1), Xi, b(Xi)] | Yi(0), Yi(1), b(Xi)

]
= EX

[
ET [Ti | Xi, b(Xi)] | Yi(0), Yi(1), b(Xi)

]
= EX

[
ET [Ti | b(Xi)] | Yi(0), Yi(1), b(Xi)

]
= EX [Ti | b(Xi)]

= 1 · P (Ti = 1 | b(Xi)) + 0 · P (Ti = 0 | b(Xi))

= P (Ti = 1 | b(Xi)).
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Problem Set Up Estimating the Propensity Score

Estimating the Propensity Score

The true propensity score is unknown
π(Xi) = P (Ti = 1 | Xi) can be modeled with logistic regression

Definition
The binary logistic regression response function is

π(Xi) =
exp(X ′iβ)

1 + exp(X ′iβ)
, (8)

where Xi is vector of covariates for the ith unit, and β is the vector of
parameters.
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Problem Set Up Estimating the Propensity Score

Likelihood Function

Ti is a Bernoulli random variable

L(β) =

n∏
i=1

π(Xi)
Ti · (1− π(Xi))

1−Ti

l = ln(L(β)) = ln
( n∏
i=1

π(Xi)
Ti · (1− π(Xi))

1−Ti
)

=

n∑
i=1

ln
(
π(Xi)

Ti · (1− π(Xi))
1−Ti

)
=

n∑
i=1

(
Ti · ln(π(Xi)) + (1− Ti) · ln(1− π(Xi))

)
.
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Problem Set Up Estimating the Propensity Score

Estimated Propensity Score

Using the MLE method to estimate the parameters,

π̂(Xi) =
exp(X ′ib)

1 + exp(X ′ib)

or equivalently,

ln

(
π̂(Xi)

1− π̂(Xi)

)
= Xib
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Problem Set Up Estimating the Propensity Score

Measures of Model Accuracy

Definition
Let lr and lp be the log-likelihood functions for the reduced model and
the proposed model respectively. Then the likelihood ratio statistic, D,
is

D = 2[lp − lr]
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Problem Set Up Estimating the Propensity Score

Estimating the Propensity Score in R

1 Include all scientifically significant predictors
2 Include all statistically significant first order terms
3 Include all statistically significant second order terms
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Problem Set Up Estimating the Propensity Score

Choosing Statistically Significant Terms

Suppose there are p variables in the data set,
1 Fit a base model with all a scientifically significant predictors
2 Fit p - a new models, each with the scientifically significant

predictors, plus 1 of the remaining variables.
3 Calculate the likelihood ratio statistic, D, for each model
4 If any D ≥ 1, add that predictor variable to the base model, and

repeat steps 2 - 4
5 When all D < 1, add no more first order predictor variables
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Problem Set Up Estimating the Propensity Score

Choosing Statistically Significant Terms

Choosing second order terms follows a very similar logic
Only consider second order terms that include variables already in
the model
If any D ≥ 2.71, add it to the model, if not move on
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Problem Set Up Estimating the Propensity Score

Issues with the Propensity Score

The propensity score must be correctly modeled
The goal of a logistic regression model is accurate prediction of
P (Ti = 1)

Iterative processes can be lengthy and difficult
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Problem Set Up Covariate Balancing Propensity Score

Covariate Balancing Propensity Score

The goal is to balance the covariates
This is not an iterative process
Parameter estimates are derived by the MLE method with the
following balancing condition

1

n1

n∑
i=1

(
Ti −

(1− Ti)π(Xi)

1− π(Xi)

)
X̃i = 0

X̃i = Xi or X̃i = (XT
i (X2

i )T )T
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Causal Inference Methods

Estimation Methods

1 Matching Methods
2 Stratification Methods
3 Inverse Probability Methods
4 Entropy Balancing Methods
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Causal Inference Methods Matching Methods

Matching Logic

Similar treatment and control units are directly compared
”Most similar” is determined by some distance metric based on
the covariates
Once treatment and control units are matched, responses can be
compared
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Causal Inference Methods Matching Methods

Distance Metrics

Definition
(Mahalanobis Distance): The mahalanobis distance is defined as

Dij = (Xi −Xj)
′Σ−1(Xi −Xj),

where Xi,Xj are p× 1 vectors of covariates for the ith and jth units
respectively, and Σ is the variance-covariance matrix of the covariates.
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Causal Inference Methods Matching Methods

Distance Metrics

Definition
(Absolute Propensity Score Difference): This difference is defined as,

Dij = |π(Xi)− π(Xj)|,

where π(Xi), π(Xj) are the estimated propensity scores for the ith and
jth units respectively.
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Causal Inference Methods Matching Methods

Matching Processes

Nearest Neighbor Matching
1 - 1 matching
1 - n matching
greedy matching
optimal matching
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Causal Inference Methods Matching Methods

Matching Algorithm

Focus on 1 - 1 nearest neighbor greedy matching
1 Estimate the propensity score
2 Select a treatment unit at random, find the closest control unit
3 Find the difference in the responses
4 Discard both units
5 Repeat steps 2 - 4 until all treatment units have been discarded
6 Take the mean of the responses
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Causal Inference Methods Matching Methods

Calipers and Efficiency Bounds

Calipers are set as maximum allowed distance between matched
units
Efficiency bounds trim extreme propensity scores
Trim controls with high propensity scores and treatments with low
propensity scores
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Causal Inference Methods Matching Methods

Optimal Trimming

Theorem
Let α be defined such that we only consider propensity score values
α ≤ π(Xi) ≤ 1− α. If

sup
x∈X

1

π(Xi)1− π(Xi)
≤ 2E

[
1

π(Xi)1− π(Xi)

]
,

then α = 0. Otherwise, α is a solution to

1

α(1− α)
= 2E

[
1

π(Xi)1− π(Xi)

∣∣∣∣ 1

π(Xi)1− π(Xi)
≤ 1

α(1− α)

]
.
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Causal Inference Methods Stratification

Stratification Logic

The data is broken into strata where each unit has a similar
propensity score
Inside each strata, units will have a better covariate balance
The average response for the treatment and controls are
compared within each strata
A weighted average of the strata specific difference is an estimate
for average treatment effect
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Causal Inference Methods Stratification

Stratification Methods

The researcher defines some J strata by a predetermined method
Method 1: Divided such that there are a roughly equal number of
units in each strata
Method 2: Divided such that there are equal ranges of propensity
scores in each strata
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Causal Inference Methods Stratification

Stratification Algorithm

1 Estimate the propensity score
2 Divide the data into J strata by chosen method
3 Stratum specific average differences are calculated

τdiff (j) = Ȳt(j)− Ȳc(j),

where

Ȳt(j) =
1

Nt(j)

n∑
i=1

Ti ·Bi(j) · Yi

and

Ȳc(j) =
1

Nc(j)

n∑
i=1

(1− Ti) ·Bi(j) · Yi,
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Causal Inference Methods Stratification

Stratification Algorithm

The stratification estimator then becomes,

τstrat =

J∑
j=1

q(j) · τdiff (j)
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Causal Inference Methods Inverse Probability of Treatment Weighting

Inverse Probability Weighting

Responses are re-weighted via the following estimator

τW,ATT =
1

n

n∑
i=1

TiYi −
1

n

n∑
i=1

(1− Ti)Yiπ(Xi)

1− π(Xi)
,
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Causal Inference Methods Inverse Probability of Treatment Weighting

Entropy Balancing Logic

The responses are each re-weighted
A loss function is defined, and constraints are set to balance the
covariates
The method of Lagrange multipliers is used to derive the weights.
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Causal Inference Methods Entropy Balancing

Entropy Balancing

Loss Function: h(wi) = wi · ln(wi
qi

)

Constraint:
∑
i|T=0

wi · cri(Xi) = mr with r ∈ 1, ..., R.

Constraint:
∑
i|T=0

wi = 1 and wi ≥ 0.
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Causal Inference Methods Entropy Balancing

Entropy Balancing: Deriving the Weights

L =
∑
i|T=0

wi · ln(
wi
qi

) +

R∑
r=1

λr

( ∑
i|T=0

wi · cri(Xi)−mr

)
+ (λ0 −

1)
( ∑
i|T=0

wi − 1
)

∂L
∂wi

= ln(wi
qi

) + 1 +
(∑R

r=1 λrcri(Xi)
)

+ (λ0 − 1) = 0

wi = qi · exp
(
−
∑R

r=1 λrcri(Xi)
)
· exp(−λ0)

w∗i = qi·exp(−λ1c1i(Xi)−λ2c2i(Xi))
Σ{i|T=0}qi·exp(−λ1c1i(Xi)−λ2c2i(Xi))
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Simulations

Simulation Design

Description
A 50 Treated, 100 Control, equal variance-covariance
B 250 Treated, 250 Control, equal variance-covariance
C 50 Treated, 100 Control, unequal variance-covariance
D 250 Treated, 250 Control, unequal variance-covariance

3 Pre-treatment variables
1000 iterations
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Simulations

Design A and B

ΣT=1 = ΣT=0 = 1 0 0
0 1 0
0 0 1


µT=1 = [0, 0, 0]′

µT=0 = [0.4, 0.4, 0.4]′
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Simulations

Design C and D

ΣT=1 = 1.5 0 0
0 1.5 0
0 0 1.5


ΣT=0 = 0.5 0 0

0 0.5 0
0 0 0.5


µT=1 = [0, 0, 0]′

µT=0 = [0.4, 0.4, 0.4]′
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Simulations

Design A Results

RAW PSM PSMC PSTMC PSTMO
Bias -121.26 -2.75 0.53 0.44 0.72
MSE 155.96 1.76 1.53 1.66 1.61

WPS CBMat1 CBMat2 CBMat3 CBMat4
Bias -0.53 -3.95 -1.20 -1.15 -1.36
MSE 3.08 1.84 1.69 1.82 1.77

MD STRT1 STRT2 CBWPS EB
Bias -18.26 -11.96 -12.66 0.04 -0.95
MSE 4.84 3.05 3.18 0.24 0.26

Table: Design A Results
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Simulations

Design B Results

RAW PSM PSMC PSTMC PSTMO
Bias -120.17 -1.52 -0.10 -0.24 0.06
MSE 146.74 0.26 0.19 0.19 0.18

WPS CBMat1 CBMat2 CBMat3 CBMat4
Bias -0.02 -1.93 -0.53 -0.58 -0.43
MSE 1.25 0.27 0.19 0.20 0.20

MD STRT1 STRT2 CBWPS EB
Bias -12.09 -10.33 -12.27 0.01 -0.12
MSE 1.70 1.38 1.84 0.07 0.07

Table: Design B Results
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Simulations

Design C Results

RAW PSM PSMC PSTMC PSTMO
Bias -121.05 -23.04 0.24 -2.58 0.82
MSE 156.31 9.32 1.42 2.50 1.57

WPS CBMat1 CBMat2 CBMat3 CBMat4
Bias -49.79 -25.07 -1.03 -2.28 -1.33
MSE 28.36 10.64 1.91 2.65 2.22

MD STRT1 STRT2 CBWPS EB
Bias -43.61 1.36 -13.60 -0.09 -0.83
MSE 22.23 1.55 3.36 0.36 0.37

Table: Design C Results
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Simulations

Design D Results

RAW PSM PSMC PSTMC PSTMO
Bias -119.56 -15.78 -0.56 -1.45 -0.18
MSE 145.44 3.60 0.21 0.38 0.19

WPS CBMat1 CBMat2 CBMat3 CBMat4
Bias -57.87 -15.62 -0.46 -0.77 0.50
MSE 34.45 3.61 0.26 0.28 0.23

MD STRT1 STRT2 CBWPS EB
Bias -34.54 -9.54 -12.63 -0.09 -0.20
MSE 12.75 1.31 1.96 0.10 0.10

Table: Design D Results
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Simulations

Simulation Conclusions

IPW with CBPS
Entropy Balancing
Propensity score matching with a caliper = 0.1 and trimming
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Empirical Study

Mastectomies versus Breast Conservation Methods

1980’s study conducted by the the GBCSG
Treatments: Mastectomies, Breast Conservation Methods (BCM)
Responses: Physical and Emotional Status
n = 646 patients, n0 = 479 mastectomies, n1 = 167 BCM’s

Table: Head of the stu1 data

klinik tmass therapie alter tgr age ewb pst mp
1 3 -7.76 0 -11.91 1 1 63.46 81.25 0
2 3 -4.76 0 -4.91 1 1 90.38 93.75 0
3 4 -3.76 0 -14.91 1 1 73.08 93.75 1
4 6 -7.76 0 -0.91 1 1 75.00 81.25 1
5 6 -3.76 0 -1.91 1 1 34.62 56.25 1
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Empirical Study

Summary Statistics

Table: Sample Means and Standard Deviations

x̄BC x̄M SBC SM
tmass 14.47 13.51 4.40 3.64
alter 59.41 52.00 11.50 10.40

Table: Sample Conditional Proportions of Categorical Variables

mp tgr age
< 15 ≥ 15 ≤ 10mm > 10mm ≤ 55 > 55

BC 0.5449 0.4551 0.1796 0.8204 0.3353 0.6647
M 0.4405 0.5595 0.2714 0.7286 0.6138 0.3862
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Empirical Study

Continuous Plots
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Empirical Study

Estimating the Propensity Scores

Include scientifically significant predictors
Include statistically significant linear predictors

Step
tmass 6.53 4.28 5.11 -
alter 52.07 - - -

many pat 5.42 6.44 - -
tgr 5.87 4.14 4.39 0.25
age 38.96 0.05 0.03 0.01

Table: Likelihood Ratio Statistics
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Empirical Study

Estimating the Propensity Scores

Include statistically significant second order predictors

Step
alter2 0.86 0.76

alter ·many pat 0.38 0.38
alter · tmass 0.19 0.17

many pat · tmass 0.06 0.22
tmass2 3.98 -

Table: Likelihood Ratio Statistics
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Empirical Study

Estimated Propensity Scores

Logit Propensity Score Model:

ln

(
π(Xi)

1−π(Xi)

)
=

−0.756 + 0.059 · alter − 0.495 ·mp+ 0.041 · tmass− 0.010 · tmass2

Logit CBPS Model:

ln

(
πCB(Xi)

1−πCB(Xi)

)
=

−0.780 + 057 · alter − 0.476 ·mp+ 0.044 · tmass− 0.009 · tmass2
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Empirical Study

ATT Estimates

RAW PSTMO CBWPS EB
ATT -1.59 -1.67 -1.15 1.73

Table: ATT Estimates for pst

RAW PSTMO CBWPS EB
ATT 0.09 0.44 0.19 0.33

Table: ATT Estimates for ewb
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Empirical Study

Conclusion

Propensity score can be modeled with logistic regression
CBPS takes away the iterative process
Matching calipers and trimming
IPW and entropy balancing
Codes at https://github.com/kbrown1224/Thesis-Codes
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